Opleiding: Introduction to Machine Learning Models Using IBM SPSS Modeler (V18.2) SPVC [0E079G]

OVERVIEW

This course provides an introduction to supervised models, unsupervised models, and association models.

This is an application-oriented course and examples include predicting whether customers cancel their subscription, predicting property values, segment customers based on usage, and market basket analysis.

This course contains a PDF course guide, as well as a lab environment where students can work through demonstrations and exercises at their own pace.

OBJECTIVES

After this course participants should be able to:

  • Describe the machine learning models
  • Describbe Supervised models Decision trees :
    • CHAID
    • C&R Tree 
  • Evaluate measures for supervised models
  • Describe Supervised models:
    • Statistical models for continuous targets - Linear regression 
    • Statistical models for categorical targets - Logistic regression
  • Associate models: Sequence detection
  • Describe Supervised models:
    • Black box models - Neural networks 
    • Black box models - Ensemble models 
  • Describe Unsupervised models:
    • K-Means and Kohonen
    • TwoStep and Anomaly detection  
  • Describe Association models:
    • Apriori
  • Prepare data for modeling

CONTENT

Introduction to machine learning models

  • Taxonomy of machine learning models 
  • Identify measurement levels 
  • Taxonomy of supervised models 
  • Build and apply models in IBM SPSS Modeler  

Supervised models: Decision trees - CHAID 

  • CHAID basics for categorical targets 
  • Include categorical and continuous predictors 
  • CHAID basics for continuous targets 
  • Treatment of missing values  

Supervised models: Decision trees - C&R Tree 

  • C&R Tree basics for categorical targets 
  •  Include categorical and continuous predictors 
  • C&R Tree basics for continuous targets 
  • Treatment of missing values  

Evaluation measures for supervised models 

  • Evaluation measures for categorical targets 
  • Evaluation measures for continuous targets  

Supervised models: Statistical models for continuous targets - Linear regression 

  • Linear regression basics 
  • Include categorical predictors 
  • Treatment of missing values  

Supervised models: Statistical models for categorical targets - Logistic regression

  • Logistic regression basics 
  • Include categorical predictors 
  • Treatment of missing values

Association models: Sequence detection 

  • Sequence detection basics 
  • Treatment of missing values

Supervised models: Black box models - Neural networks 

  • Neural network basics 
  • Include categorical and continuous predictors 
  • Treatment of missing values  

Supervised models: Black box models - Ensemble models 

  • Ensemble models basics 
  • Improve accuracy and generalizability by boosting and bagging 
  • Ensemble the best models  

Unsupervised models: K-Means and Kohonen 

  • K-Means basics 
  • Include categorical inputs in K-Means 
  • Treatment of missing values in K-Means 
  • Kohonen networks basics 
  • Treatment of missing values in Kohonen  

Unsupervised models: TwoStep and Anomaly detection 

  • TwoStep basics 
  • TwoStep assumptions 
  • Find the best segmentation model automatically 
  • Anomaly detection basics 
  • Treatment of missing values  

Association models: Apriori 

  • Apriori basics 
  • Evaluation measures 
  • Treatment of missing values

Preparing data for modeling 

  • Examine the quality of the data 
  • Select important predictors 
  • Balance the data
Meer...
€990
ex. BTW
Aangeboden door
Global Knowledge Network Netherlands B.V.
Onderwerp
SPSS
Machine learning
IBM (overzicht)
Niveau
Looptijd
365 dagen
Taal
nl
Type product
cursus
Lesvorm
E-Learning
Keurmerken aanbieder
Cedeo
CRKBO en BTW-vrijstelling
VOI
EXIN
ISO register
Microsoft Learning Partner
VMWare Partner
Oracle Education Partner
AgilePM - Agile Project Management (APMG)
ASL